Уроки математики / Другое / Численные методы решения задачи Коши для ОДУ первого порядка

Численные методы решения задачи Коши для ОДУ первого порядка

Численные методы решения задачи Коши для ОДУ первого порядка

Постановка задачи. Найти решение ОДУ первого порядка на отрезке [x0, xn] при условии y(x0)=y0.

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки xi=x0+ih, (i=0,1,…,n) промежутка [x0, xn].

Целью является построение таблицы.

Таблица

xi

x0

x1

xn

yi

y0

y1

yn

Т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке [xi,xi+1]получим

Вполне естественным (но не единственным) путем получения численного решения является замена в нем интеграла какой-либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников первого порядка

Геометрическая интерпретация метода Эйлера

Пользуясь тем, что в точке x0 известно решение y(x0) = y0 и значение его производной , можно записать уравнение касательной к графику искомой функции y=y(x)

в точке (x0,y0):

При достаточно малом шаге h ордината , этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y(x1) решения y(x) задачи Коши. Следовательно, точка (x1,y1) пересечения касательной с прямой x = x1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к y=y(x) в точке (x1, y(x1)). Подставляя сюда x2=x1+h (т.е. пересечение с прямой x = x2), получим приближенное значение y(x) в точке x2: , и т.д. В итоге для i-й точки получим формулу Эйлера.

Метод Эйлера

Явный метод Эйлера имеет первый порядок точности или аппроксимации. Если использовать формулу правых прямоугольников:

то придем к методу

Этот метод называют неявным методом Эйлера, поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

Модифицированный метод Эйлера: в данном методе вычисление yi+1 состоит из двух этапов:

Данная схема называется еще методом предиктор - корректор (предсказывающее - исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Автор
Дата добавления 22.05.2017
Раздел Высшая математика
Подраздел Другое
Просмотров345
Номер материала 4144
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.