Пояснительная записка
Данная рабочая программа по математике разработана на основе:
закона «Об образовании в Российской Федерации» № 273-фз от 29.12.2012 г.
Федерального государственного образовательного стандарта общего образования и
науки Российской Федерации от 17 декабря 2010 № 1897
основной образовательной программы основного общего образования МКОУ СОШ №7
фундаментального ядра содержания общего образования;
требований к результатам освоения основной образовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте основного общего образования;
примерной программы основного общего образования по математике;
программы развития и формирования универсальных учебных действий, которые
обеспечивают формирование российской гражданской идентичности, овладение
ключевыми компетенциями, составляющими основу для саморазвития и непрерывного
образования;
учебного плана МКОУ СОШ №7;
адаптированной программы основного общего образования
МКОУ СОШ №7;
Примерной программы по математике для 6 класса по учебнику Н.Я.Виленкина, В.И.Жохова и др. / В.И.Жохов, М.: Мнемозина, 2010
Данная программа является рабочей программой по предмету «Математика» в 6 классе базового уровня.
Рабочая программа реализуется по учебнику: Виленкин Н.Я. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М. Мнемозина, 2013.
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.
В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, а так же современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС. А так же идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.
Общая характеристика предмета
Математика играет важную роль в формировании у школьников умения учиться.
Обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а также являются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.
Предложенная рабочая программа рассчитана на разные группы учащихся, в том числе на учащихся имеющих ослабленное состояние нервной системы, влекущее за собой быструю утомляемость, низкую работоспособность, повышенную отвлекаемость, что, в свою очередь, ведёт к нарушению внимания, восприятия, абстрактного мышления. У таких детей отмечаются периодические колебания внимания, недостаточное концентрация на объекте, малый объём памяти.
Трудности усвоения детьми со смешанными специфическими расстройствами психологического развития учебного материала предполагают в первую очередь введение изменений в часовое распределение содержания программы. В течение учебного года после изучения каждой темы предусмотрено проведение уроков повторения и обобщения. На уроках учитываются индивидуальные и психологические особенности детей с ограниченными возможностями здоровья.
Цель изучения: овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка обучающихся к изучению систематических курсов алгебры и геометрии.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные преставления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Усвоенные знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.
Программа определяет ряд задач, решение которых направлено на достижение основной цели основного общего математического образования:
в направлении личностного развития:
• развивать логическое и критическое мышление, культуру речи, способность к умственному эксперименту;
• сформировать у учащихся интеллектуальную честность и объективность, способность к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
• воспитывать качества личности, обеспечивающие социальную мобильность, способность принимать самостоятельные решения;
• сформировать качества мышления, необходимые для адаптации в современном информационном обществе;
• развивать интерес к математическому творчеству и математическим способностям;
в метапредметном направлении:
• сформировать представление о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
• развивать представление о математике как форме описания и методе познания действительности, создать условия для приобретения первоначального опыта математического моделирования;
• сформировать общие способы интеллектуальной деятельности, характерные для математики и являющиеся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
в предметном направлении:
• овладеть математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
• создать фундамент для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Курс математики 6 класса - важнейшее звено математического образования и развития школьников. На этом этапе заканчивается в основном обучение счёту на множестве рациональных чисел, формируется понятие переменной и даются первые знания о приёмах решения линейных уравнений, продолжается обучение решению текстовых задач, совершенствуются и обогащаются умения геометрических построений и измерений.
Серьёзное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполненных действий. При этом учащиеся постепенно осознают правила выполнения основных логических операций. Отрабатываются межпредметные и межкурсовые связи. Так, например, по биологии–темы «Столбчатые диаграммы», «Прямая и обратная пропорциональные зависимости», по географии - тема «Масштаб», по ИЗО, технологии – тема «Перпендикулярные и параллельные прямые», по химии – тема «Пропорции».
Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений.
Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе.
Математическое образование в 6 классе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей необходимы, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты.
Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.
Описание места курса математики в учебном плане
В соответствии с учебным планом основного общего образования в курсе математики выделяются два этапа – 5-6 классы и 7-9 классы, у каждого из которых свои самостоятельные функции. В 5-6 классах изучается интегрированный предмет «Математика», в 7-9 классах – два предмета «Алгебра» и «Геометрия».
Соответственно действующему в МКОУ СОШ №7 учебному плану рабочая программа предусматривает следующий вариант организации процесса обучения в 6-х классах: базовый уровень обучения в объеме 175 часов, в неделю – 5 часов. Предусмотрены 12 контрольных работ. Из них: 9 тематических, 1 входная, 1 полугодовая и 1 итоговая.
Отбор материала обучения осуществляется на основе следующих дидактических принципов: систематизации знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для этого возраста; создание условий для понимания и осознания воспринимаемого материала.
Личностные, метапредметные и предметные результаты освоения курса математики
Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.
Личностными результатами изучения предмета «Математика» является формирование следующих умений и качеств:
независимость и критичность мышления;
воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
система заданий учебников;
представленная в учебниках в явном виде организация материала по принципу минимакса;
использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно-деятельностного подхода в обучении, технология оценивания.
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
Познавательные УУД:
проводить наблюдение и эксперимент под руководством учителя;
осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
анализировать, сравнивать, классифицировать и обобщать факты и явления;
давать определение понятиям.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
в дискуссии уметь выдвинуть контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование личностно-ориентированного и системно-деятельностного обучения.
Предметными результатами изучения предмета «Математика» является формирование следующих умений и качеств:
умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умения пользоваться изученными математическими формулами;
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
приобретение первоначальных навыков работы на компьютере (набирать текст на клавиатуре, работать с меню, находить информацию по заданной теме, распечатывать её на принтере).
Содержание учебного курса математики
Учебно-тематический план
№ п\п | Наименование темы | Кол. часов | Кол. контр. раб |
1 | Повторение курса математики 5 класса | 7 | 1 |
2 | Делимость чисел | 13 | 1 |
3 | Сложение и вычитание дробей с разными знаменателями | 24 | 2 |
4 | Умножение и деление обыкновенных дробей | 28 | 1 |
5 | Пропорции | 18 | 2 |
6 | Положительные и отрицательные числа | 11 | - |
7 | Сложение и вычитание положительных и отрицательных чисел | 12 | 1 |
8 | Умножение и деление положительных и отрицательных чисел | 12 | 1 |
9 | Решение уравнений | 16 | 1 |
10 | Координаты на плоскости | 10 | 1 |
11 | Элементы статистики, комбинаторики и теории вероятностей. | 6 | - |
12 | Повторение | 18 | 1 |
Итого часов | 175 | 12 |
Содержание тем учебного курса
1. Повторение – 3 ч.
2. Делимость чисел (13 ч).
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 10. Простые и составные числа. Разложение натурального числа на простые множители.
Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.
Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.
Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 • 6 = 4 • 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.
3. Сложение и вычитание дробей с разными знаменателями (24 ч).
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Основная цель — выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.
При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.
4. Умножение и деление обыкновенных дробей (28 ч).
Умножение и деление обыкновенных дробей. Основные задачи на дроби.
Основная цель — выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.
В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.
Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.
Отношения и пропорции (18 ч).
Отношение. Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональностях величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Основная цель — сформировать понятия отношение двух величин, пропорции, прямой и обратной пропорциональностей величин.
Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.
Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.
В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.
Положительные и отрицательные числа (11 ч).
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл.
Сравнение чисел. Целые числа. Изображение чисел на прямой. Координата точки.
Основная цель — расширить представления учащихся о числе путем введения отрицательных чисел.
Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем, чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.
Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.
Сложение и вычитание положительных и отрицательных чисел (12 ч).
Сложение и вычитание положительных и отрицательных чисел.
Основная цель — выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.
Умножение и деление положительных и отрицательных чисел (12 ч).
Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.
Основная цель — выработать прочные навыки арифметических действий с положительными и отрицательными числами.
Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.
При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как ½, ¼.
Решение уравнений (16 ч).
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель — подготовить учащихся к выполнению преобразований выражений, решению уравнений.
Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений.
Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одним неизвестным.
Координаты на плоскости (10 ч).
Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.
Основная цель — познакомить учащихся с прямоугольной системой координат на плоскости.
Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя воспроизведения точных определений.
Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.
Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.
Элементы статистики, комбинаторики и теории вероятностей (6 ч)
Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов.
Примеры решения комбинаторных задач: перебор вариантов, правило умножения.
Повторение. Решение задач (18 ч).
VIII. Планируемые результаты изучения курса математики
Предметными результатами изучения предмета «Математика» в 6 классе является сформированность следующих умений:
Предметная область «Арифметика»:
выполнять устно арифметические действия: сложение и вычитание двухзначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов;
выполнять арифметические действия с рациональными числами, находить значение числового выражения (целых и дробных);
округлять целые числа и десятичные дроби, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; переводить одни единицы измерения в другие;
решать текстовые задачи, в том числе связанные с отношениями и с пропорциональностью величин, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:
решения несложных практических расчетных задач, в том числе с использованием справочных материалов, калькулятора;
устной прикидки и оценки результата вычислений;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Алгебра»:
переводить условия задачи на математический язык; использовать методы работы с математическими моделями;
осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;
определять координаты точки и изображать числа точками на координатной плоскости;
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;
решать текстовые задачи алгебраическим методом.
Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:
выполнение расчетов по формулам, составление формул, выражающих зависимости между реальными величинами.
Предметная область «Геометрия»:
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры, распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела;
в простейших случаях строить развертки пространственных тел;
вычислять площади, периметры, объемы простейших геометрических фигур (тел) по формулам.
Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:
решения несложных геометрических задач, связанных с нахождением изученных геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Предметная область «Теория вероятности, статистика, комбинаторика»:
выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных задач;
приводить примеры случайных событий, достоверных и невозможных событий; сравнивать шансы наступления событий;
выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям;
строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.
Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:
понимания вероятностного характера многих реальных зависимостей;
решения несложных вероятностных задач.
IX. Требования к уровню подготовки учащихся с ОВЗ, усваивающих программный материал по математике.
Учащиеся должны иметь представление:
о числе и числовых системах от натуральных до рациональных чисел;
о вероятности, о благоприятных и неблагоприятных исходах; о подсчёте вероятности;
о пропорциональных и обратно пропорциональных величинах.
Учащиеся должны уметь:
использовать символический язык алгебры, выполнять тождественные преобразования простейших буквенных выражений, применять приобретённые навыки в ходе решения задач;
решать линейные уравнения, применять данные умения для решения задач;
решать задачи выделением трёх этапов математического моделирования;
составлять и решать пропорции;
использовать геометрический язык для описания предметов окружающего мира;
применять правило произведения при решении простейших вероятностных задач;
вычислять длину окружности, площадь круга.
VII. Описание материально-технического обеспечения образовательного процесса
Для учителя:
Федеральный государственный стандарт общего образования по математике. И. Сафронова, Серия: стандарты второго поколения, М.: Просвещение, 2013
Примерные программы по учебным предметам. Математика 5 – 9 классы. Н. Евстегнеева, Серия: стандарты второго поколения, М.: Просвещение, 2010.
Рабочая программа по математике. 6 класс (соответствует ФГОС) / Сост. В.И. Ахременкова. – М.: ВАКО, 2013
В.И. Жохов. Программа. Планирование учебного материала. Математика. 5 – 6 классы. М.: Мнемозина, 2010
Для учащихся:
Н.Я. Виленкин. Математика. Учебник для 6 класса общеобразовательных учреждений. М., «Мнемозина», 2013.
Т.М. Ерина. Рабочая тетрадь по математике: 6 класс (ФГОС): к учебнику Н.Я. Виленкина и др. «Математика: 6 класс». М.: Издательство «Экзамен», 2014
Контрольно-измерительные материалы:
М.А. Попов. Контрольные и самостоятельные работы по математике 6 класс (ФГОС): к учебнику Н.Я. Виленкина и др. «Математика: 6 класс». М.: Издательство «Экзамен», 2014
Е.М. Ключникова. Промежуточное тестирование. Математика. 6 класс (ФГОС). М.: Издательство «Экзамен», 2014
В.В. Выговская. Сборник практических задач по математике: 6 класс. (соответствует ФГОС) М.: ВАКО, 2012
А.С. Чесноков, К.И. Нешков. Дидактические материалы по математике для 6 класса. М.: Просвещение, Классик-Стиль, 2013.
В.И. Жохов. Математический тренажер. 6 класс: пособие для учителей и учащихся / М.: Мнемозина, 2013.
Интернет-ресурс
www. edu - "Российское образование"
http://www.school.edu.ru/ Федеральный портал.
www.school.edu - "Российский общеобразовательный портал".
www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов
Приложение 1.
Критерии и нормы оценки знаний, умений и навыков, обучающихся по математике
Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
2. Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
3. Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
3.2. К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.
Календарно - тематическое планирование по математике 6 класс (ФГОС)
Автор |
|
---|---|
Дата добавления | 24.03.2018 |
Раздел | Математика |
Подраздел | Рабочая программа |
Просмотров | 982 |
Номер материала | 5519 |
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное. |