Уроки математики / Статья / Изучение текстовых задач в начальной школе

Изучение текстовых задач в начальной школе

Изучение текстовых задач

в начальной школе

С первых дней в школе ребенок встречается с задачей. Сначала и до конца обучения в школе математическая задача неизменно помогает ученику глубже выяснить различные стороны взаимосвязей в окружающей жизни, расширить свои представления о реальной действительности, учиться решать и другие математические и нематематические задачи. Задачи показывают значение математики в повседневной жизни, помогают детям использовать полученные знания в практической деятельности. Решение задач занимает в математическом образовании огромное место. Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала.

Учителю необходимо сформировать умение решать задачи.

Любое математическое задание можно рассматривать как задачу, выделив в нём условие, т.е. ту часть, где содержатся сведения об известных и неизвестных значениях величин, об отношениях между ними, и требование – все неизвестные величины или отношения между ними, которые надо найти.

Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми.

Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи.

В каждой задаче можно выделить:

  • числовые значения величин, которые называются данными, или известными);

  • требование, которое надо выполнить, или вопрос, на который надо найти ответ.

Требования могут быть сформулированы как в вопросительной, так и в повествовательной форме. Текстовые задачи имеют и другие названия: арифметические ,сюжетные.

Существуют различные подходы к обучению младших школьников решению текстовых задач

Вопрос о том, как научить детей устанавливать связи между данными и искомыми в текстовой задаче и в соответствии с этим выбрать, а затем выполнить арифметические действия, решается в методической науке по-разному. Тем не менее, все многообразие методических рекомендаций, связанных с обучением младших школьников решению задач, целесообразно рассматривать с точки зрения двух принципиально отличающихся друг от друга подходов .

Один подход нацелен на формирование у учащихся умения решать задачи определенных типов и видов (\Моро М.И., Бантова М.А., Бельтюкова Г.Б. –УМК «Школа России»)Дети сначала учатся решать простые задачи а затем составные, включающие в себя различные сочетания простых задач.

Процесс обучения решению простых задач является одновременно процессом формирования математических понятий. В связи с этим, в зависимости от тех понятий, которые рассматриваются в курсе математики начальных классов, простые задачи делятся на три группы:

  • первая группа включает простые задачи, при решении которых дети усваивают конкретный смысл каждого из арифметических действий (сложение, вычитание, умножение, деление);

  • вторая группа включает простые задачи, при решении которых учащиеся усваивают связь между компонентами и результатами арифметических действий. Это простые задачи на нахождение неизвестного компонента

  • третья группа - простые задачи, при решении которых раскрываются понятия разностного сравнения и кратного отношения .

Научить детей решать задачи — значит, научить их устанавливать связи между данными и искомым и в соответствии с этим выбирать, а затем и выполнять арифметические действия.

Центральным звеном в умении решать задачи, которым должны овладеть учащиеся, является усвоение связей между данными и искомым. От того, насколько хорошо усвоены учащимися эти связи, зависит их умение решать задачи. Учитывая это, в начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач будем называть задачами одного вида. Работа над задачами не должна сводиться к натаскиванию учащихся на решение задач сначала одного вида, затем другого и т. д. Главная ее цель — научить детей осознанно устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:

1)подготовительную работу к решению задач;

2)ознакомление с решением задач;

3)закрепление умения решать задачи.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

Методика работы с каждым новым видом составных задач, согласно данному подходу, ведется также в соответствии с тремя ступенями: подготовительная, ознакомительная, закрепление. Процесс решения каждой составной задачи осуществляется поэтапно:

1.Ознакомление с содержанием задачи.

2.Поиск решения задачи.

3.Составление плана решения.

4.Запись решения и ответа.

5.Проверка решения задачи.

Сначала задачу читает учитель или кто-то из учеников (первое прочтение). Затем учащимся предлагается прочитать задачу про себя, так как не все могут сосредоточиться на ее содержании, когда один из учеников читает вслух (второе прочтение).

-Кто может повторить задачу? (Дети воспроизводят текст по памяти - третье прочтение).

-Выделите условие и вопрос задачи (четвертое прочтении). Фактически опять воспроизводится текст.

-Что нам известно? (пятое прочтение, ученики воспроизводит условие).

-Что неизвестно? (Воспроизводится вопрос.)

Как видно, действия школьников сводятся к тому, что они пять раз воспроизводят текст: сначала читают вслух, затем про себя, потом по частям (условие и вопрос), выделяют известное и неизвестное.

Результатом этой работы, должно явиться осознание текста, т.е. представление той ситуации, которая нашла в нем отражение. Но практика показывает, что многократное воспроизведение текст задачи не всегда эффективно для его осознания. Ученики читают задачу, воспроизводят ее, выделяют условие и вопрос, утвердительно отвечают на вопрос: «Понял ли ты задачу?», но самостоятельно приступить к ее решению не могут.

В этом случае учитель пытается помочь детям, дополняя фронтальную беседу выполнением краткой записи.

Используя такую запись, он организует целенаправленный поиск решения, применяя один из способов разбора задачи: синтетический или аналитический.

Используя при решении каждой задачи аналитический или синтетический способ разбора, учитель в конечном итоге добивается, что дети сами задают себе эти вопросы в определенной последовательности и выполняют рассуждения, связанные с решением задачи.

Минусом данного подхода является то, что используется объяснительно-иллюстративный и репродуктивный методы обучения. Поэтому многие учащиеся решают задачи лишь по образцу.

Цель другого подхода, (Истоминой Н.Б., Александровой Э.А., Аргинской И.И.) научить детей выполнять семантический, логический и математический анализ текстовых задач, выявлять взаимосвязи между условием и вопросом, данными и искомыми и представлять эти связи в виде схематических и символических моделей.

Процесс решения задач (простых и составных) рассматривается как переход от словесной модели к модели математической или схематической. Знакомству младших школьников с текстовой задачей должна предшествовать специальная работа по формированию математических понятий и отношений, которые они будут использовать при решении текстовых задач. Так как процесс решения задач связан с выделением посылок и построением умозаключений, необходимо также сформировать у младших школьников (до знакомства с задачей) те логические приемы мышления (анализ и синтез, сравнение, обобщение), которые обеспечивали бы их мыслительную деятельность в процессе решения задач.

Таким образом, готовность школьников к знакомству с текстовой задачей предполагает сформированность:

Готовность школьников к знакомству с текстовой задачей предполагает сформированность:

навыков чтения;

представлений о смысле действий сложения и вычитания, их взаимосвязи, понятий «увеличить (уменьшить) на а», разностного сравнения;

основных мыслительных операций: анализ и синтез, сравнение;

умения описывать предметные ситуации и переводить их на язык схем и математических символов;

умения чертить, складывать и вычитать отрезки;

умения переводить текстовые ситуации в различные модели и Именно второй подход позволяет в большей степени формировать общее умение решать текстовые задачи.

Чтобы научить ребёнка решать текстовые задачи, учитель должен в разумном сочетании использовать оба подхода.

Истомина Н.Б. считает, что работа, проведенная на подготовительном этапе к знакомству с текстовой задачей, позволяет организовать деятельность учащихся, направленную на усвоение ее структуры и на осознание процесса ее решения.

При этом существенным является не отработка умения решать определенные типы (виды) текстовых задач, а приобретение учащимися опыта в семантическом и математическом анализе различных текстовых конструкций задач и формирование умения представлять их в виде схематических и символических моделей.

Для приобретения опыта в семантическом и математическом анализе текстов задач (простых и составных) используется прием сравнения текстов задач. Предлагаются такие задания:

Чем похожи тексты задач? Чем отличаются? Какую задачу ты можешь решить? Какую не можешь? Почему?

  • На одном проводе сидели ласточки, а на другом – 7 воробьёв. Сколько всего сидело птиц на проводах?

  • На одном проводе сидело 9 ласточек, а на другом 7 воробьёв. Сколько всего сидело птиц на проводах?

  • Подумай, будут ли эти тексты задачами?

  • На одной тарелке 3 огурца, а на другой – 4. Сколько помидоров на двух тарелках?

  • На клумбе росло 5 тюльпанов и 3 розы. Сколько тюльпанов росло на клумбе?

Эти задания позволяют школьникам сделать первые шаги в осмыслении структуры задачи.

С целью формирования умения выбирать арифметические действия для решения задач, предлагаются задания, в которых используются приемы

  1. выбор схемы:

В портфеле 14 тетрадей. Из них 9 в клетку, остальные в линейку. Сколько тетрадей в линейку лежит в портфеле?

Маша нарисовала к задаче такую схему:

9 т. ?

14 т.

Миша – такую:

?

14 т. 9 т.

Кто из них невнимательно читал задачу?

  1. выбор вопросов

От проволоки длиной 15 дм отрезали сначала 2 дм, потом ещё 4 дм.

Подумай, на какие вопросы можно ответить, пользуясь этим условием:

  • Сколько всего дециметров проволоки отрезали?

  • На сколько дециметров проволока стала короче?

  • Сколько дециметров проволоки осталось?

  1. выбор выражений

  • На велогонках стартовало 70 спортсменов. На первом этапе с трассы сошли 4 велосипедиста, на втором – 6. Сколько спортсменов пришло к финишу?

Выбери выражение, которое является решением задачи:

6+4 6-4 70-6

70-6-4 70-4-6 70-4

  1. выбор условия к данному вопросу

Подбери условие к данному вопросу и реши задачу.

Сколько всего детей занимается в студии?

  • В студии 30 детей, из них 16 мальчиков.

  • В студии мальчики и девочки. Мальчиков на 7 меньше, чем девочек.

  • В студии 8 мальчиков и 20 девочек.

  • В студии 8 мальчиков, а девочек на 2 больше.

  • В студии занимаются 8 мальчиков, а девочек на 2 меньше.

  1. выбор данных

  • На аэродроме было 75 самолётов. Сколько самолётов осталось?

Выбери данные, которыми можно дополнить условие задачи, чтоб ответить на поставленный в ней вопрос:

  • Утром прилетело 10 самолётов, а вечером улетело 30.

  • Улетело на 20 самолётов больше, чем было

  • Улетело сначала 30 самолётов, а потом 20

  1. изменение текста задачи в соответствии с данным решением

Подумай, что нужно изменить в текстах задач так, чтобы выражение 9-6 было решением каждой?

  • На двух скамейках сидели 6 девочек. На одной из них 9. Сколько девочек сидело на второй скамейке?

  • В саду 9 кустов красной смородины, а кустов чёрной смородины на 6 больше. Сколько кустов чёрной смородины в саду?

  • В гараже 9 легковых машин и 6 грузовых. Сколько всего машин в гараже?

  1. постановка вопроса, соответствующего данной схеме

  • Коля выше Пети на 20 см, а Петя выше Вовы на 7 см. Рассмотри схему и подумай, на какой вопрос можно ответить, пользуясь данным условием:

20 см

К.

П. 7см

В.

  1. объяснение выражений, составленных по данному условию

  • Фермер отправил в магазин 45 кг укропа, петрушки на 4 кг больше, чем укропа, и 19 кг сельдерея. Сколько всего килограммов зелени отправил фермер в магазин? Что обозначают выражения, составленные по условию задачи:

45-1945+1945+445-4

  1. выбор решения задачи

  • Курица легче зайца на 4 кг, а заяц легче собаки на 8 кг. На сколько собака тяжелее курицы? На сколько курица легче собаки?

Маша решила задачу так:

8+4=12 (кг)

К.

З.

С.

А Миша – так: 8-4=4(кг)

Кто прав: Миша или Маша?

Для организации продуктивной деятельности учащихся, направленной на формирование умения решать текстовые задачи, учитель может использовать обучающие задания, включающие различные сочетания методических приемов.

Работу с обучающими заданиями на уроке целесообразно организовать фронтально. Это создаст условия для обсуждения ответов детей и для включения их в активную мыслительную деятельность.

Чтобы увеличить степень самостоятельности учащихся при анализе текста задачи, целесообразно записать его на доске и предложить детям самостоятельно решить задачу.

По мере приобретения учащимися опыта в семантическом и математическом анализе текстовых задач учитель может предлагать им задачи для самостоятельного решения. Но при этом не следует торопиться с оценкой самостоятельной работы, так как она в большей мере выполняет обучающую функцию, нежели контролирующую. Поэтому результаты самостоятельного решения задачи должны стать предметом обсуждения.

Контроль следует организовывать таким образом, чтобы он не вызывал у детей негативных эмоций и не создавал стрессовых ситуаций. Для этого со стороны учителя достаточно одной фразы, типа: «Я соберу тетради и посмотрю, в каких вопросах нам необходимо еще разобраться».

Решению текстовых задач на уроке отводится большое место, т.к. они имеют огромное значение в развитии младшего школьника. Решая математические задачи, он постепенно готовится к решению жизненных задач.

Список литературы

  1. Бантова М.А., Бельтюкова Г.В. Методика преподавания математики в начальных классах: Учеб. Пособие для учащихся школ. отд-ний пед. уч-щ (спец. № 2001)/Под ред. М.А. Бантовой 3-е изд., испр.-М.: Просвещение, 1984.-335 с., ил.

  2. Истомина Н.Б. Методика обучения математике в начальных классах. – М.: ЛИНКА – ПРЕСС, 1997 – 288с., ил.

  3. Истомина Н.Б. Методика обучения математике в начальных классах. Москва, 1992 – 251с.

  4. Истомина Н.Б., Нефёдова И.Б. Математика. 2 класс: Учебник для четырёхлетней начальной школы. – Смоленск, Издательство «Ассоциация XXI век», 2001. – 176 с.

1

Автор
Дата добавления 04.06.2019
Раздел Начальная
Подраздел Статья
Просмотров3502
Номер материала 6267
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.