Похожие материалы
Уроки математики / Другое / Метод прямоугольников для определения значения интеграла фунции

Метод прямоугольников для определения значения интеграла фунции

Метод прямоугольников

Пусть требуется определить значение интеграла функции на [a,b] отрезке. Этот отрезок делится точками x0, x1, …., xn-1, xn на n равных отрезков длиной . Обозначим через y0, y1, …., yn-1, yn значение функции f(x) в точках x0, x1, …., xn-1, xn

Далее составляем суммы . Каждая из сумм -- интегральная сумма для f(x) на [a,b] и поэтому приближённо выражает интеграл.

Если заданная функция -- положительная и возрастающая, то эта формула выражает площадь ступенчатой фигуры, составленной из «входящих» прямоугольников, также называемая формулой левых прямоугольников, а формула

(3.2)

выражает площадь ступенчатой фигуры, состоящей из «выходящих» прямоугольников, также называемая формулой правых прямоугольников. Чем меньше длина отрезков, на которые делится отрезок [a,b], тем точнее значение, вычисляемое по этой формуле, искомого интеграла.

Очевидно, стоит рассчитывать на большую точность, если брать в качестве опорной точки для нахождения высоты точку посередине промежутка. В результате получаем формулу средних прямоугольников:

(3.3)

где

Учитывая априорно большую точность последней формулы при том же объёме и характере вычислений её называют формулой прямоугольников.

3.2 Метод трапеций

Если функцию на каждом из частичных отрезков аппроксимировать прямой, проходящей через конечные значения, то получим метод трапеций.

Площадь трапеции на каждом отрезке:

(3.4)

Погрешность аппроксимации на каждом отрезке:

(3.5)

где и

Полная формула трапеций в случае деления всего промежутка интегрирования на отрезки одинаковой длины h:

(3.6)

где

Погрешность формулы трапеций:

(3.7)

где и

3.3 Метод парабол

Использовав три точки отрезка интегрирования, можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид

(3.8)

Если разбить интервал интегрирования на 2N равных частей, то имеем

(3.9)

где .

Это более совершенный способ - график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков - столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.

Задача на вычисление определенного интеграла по формуле Симпсона - самая популярное задание на практике.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и нам требуется вычислить определенный интеграл.

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид: (24)

где: - длина каждого из маленьких отрезков или шаг;

f(xi) - значения подынтегральной функции в точках x0,x1,x2,x3,…,x2n-2,x2n-1,x2n.

Детализируя это нагромождение, разберу формулу подробнее:

- сумма первого и последнего значения подынтегральной функции;

- сумма членов, с чётными индексами умножаемая на 2.

- сумма членов с нечётными индексами умножается на 4.

На основании полученных данных строим график (рисунок 2), который показывает погрешность:

Рисунок 2 - График подынтегральной функции приближенный к самой функции.

Решение:

Метод левых прямоугольников

Метод правых прямоугольников

Метод трапеции

Метод Симпсона

4. Приближенное решение обыкновенных дифференциальных уравнений первого порядка. Задача Коши

Многие задачи науки и техники сводятся к решению обыкновенных дифференциальных уравнений (ОДУ). ОДУ называются такие уравнения, которые содержат одну или несколько производных от искомой функции. В общем виде ОДУ можно записать следующим образом: , где x - независимая переменная, yi - i-ая производная от искомой функции. n - порядок уравнения. Общее решение ОДУ n-го порядка содержит n произвольных постоянных c1,.., cn,т.е. общее решение имеет вид y=ц(x, c1, …, cn).

Для выделения единственного решения необходимо задать n дополнительных условий. В зависимости от способа задания дополнительных условий существуют два различных типа задач: задача Коши и краевая задача. Если дополнительные условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задаче Коши называются начальными условиями. Если же дополнительные условия задаются в более чем одной точке, т.е. при различных значениях независимой переменной, то такая задача называется краевой. Сами дополнительные условия называются краевыми или граничными.

Ясно, что при n=1 можно говорить только о задачи Коши.

Примеры постановки задачи Коши:

(4.1)

(4.2)

Примеры краевых задач:

(4.3)

(4.4)

Решить такие задачи аналитически удается лишь для некоторых специальных типов уравнений.

4.1 Численные методы решения задачи Коши для ОДУ первого порядка

Постановка задачи. Найти решение ОДУ первого порядка на отрезке [x0, xn] при условии y(x0)=y0.

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки xi=x0+ih, (i=0,1,…,n) промежутка [x0, xn].

Целью является построение таблицы.

Таблица 2

xi

x0

x1

xn

yi

y0

y1

yn

Т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке [xi,xi+1]получим

(4.5)

Вполне естественным (но не единственным) путем получения численного решения является замена в нем интеграла какой-либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников первого порядка

(4.6)

то получим явную формулу Эйлера:

(4.7)

Порядок расчетов:

Зная , находим , затем т.д..

4.2 Геометрическая интерпретация метода Эйлера

Пользуясь тем, что в точке x0 известно решение y(x0) = y0 и значение его производной , можно записать уравнение касательной к графику искомой функции y=y(x)Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

в точке (x0,y0):

При достаточно малом шаге h ордината , этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y(x1) решения y(x) задачи Коши. Следовательно, точка (x1,y1) пересечения касательной с прямой x = x1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к y=y(x) в точке (x1, y(x1)). Подставляя сюда x2=x1+h (т.е. пересечение с прямой x = x2), получим приближенное значение y(x) в точке x2: , и т.д. В итоге для i-й точки получим формулу Эйлера.

Рисунок 7. Метод Эйлера

Явный метод Эйлера имеет первый порядок точности или аппроксимации. Если использовать формулу правых прямоугольников:

то придем к методу

(4.8)

Этот метод называют неявным методом Эйлера, поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

Модифицированный метод Эйлера: в данном методе вычисление yi+1 состоит из двух этапов:

(4.9)

(4.10)

Данная схема называется еще методом предиктор - корректор (предсказывающее - исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Решение

Метод Эйлера

Заключение

В ходе выполнения курсовой работы были изучены следующие методы решения профессиональных задач: решение нелинейных уравнений, метод касательных (Ньютона), интерполирование функции, полиномы Ньютона, численное интегрирование и приближенное решение обыкновенных дифференциальных уравнений первого порядка, задача Коши. На примерах было показано, что с помощью данных методов можно достаточно быстро решить многие профессиональные задачи с указанной степенью точности. При этом использование программы MathCad, также существенно облегчает проводимые вычисления.

Список использованных источников

1) Бахвалов Н.С. Численные методы - М.: Наука, 2006. - 632 с.

2) Березин Н.С., Жидков Н.П. Методы вычислений. - Т.1. - М.: Наука, 2008. - 464 с.

1) Васильев Ф.П. Численные методы решения экстремальных задач: Учебное пособие для вузов - 2-е изд., перераб. и доп. -М.: Наука, Гл. ред. физ.-мат. лит, 2005. -550 с.

2) Демидович Б.Н., Марон И.А. Основы вычислительной математики. -М.: Наука, 2012.- 664 с.

3) Самарский А.А. Введение в численные методы. - 3-е изд., пе

Автор
Дата добавления 30.04.2017
Раздел Высшая математика
Подраздел Другое
Просмотров104
Номер материала 3910
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.