Уроки математики / Статья / Статья по теме:«Дифференцированный подход в обучении математике на современном этапе развития общеобразовательной школы»

Статья по теме:«Дифференцированный подход в обучении математике на современном этапе развития общеобразовательной школы»

Статья по теме:«Дифференцированный подход в обучении математике на современном этапе развития общеобразовательной школы»

В последние годы значительно усилился интерес учителей общеобразовательной школы к проблеме дифференцированного подхода в обучении школьников математике на различных ступенях математического образования. Этот интерес во многом объясняется стремлением учителей так организовать учебно-воспитательный процесс, чтобы каждый ученик был оптимально занят учебно-воспитательной деятельностью на уроках и в домашней подготовке к ним с учетом его математических способностей интеллектуального развития, чтобы не допускать пробелов в знаниях и умениях школьников, а в конечном итоге дать полноценную базовую математическую подготовку учащимся обычного класса. Такой организации обучения математике требует современное состояние нашего общества, когда в условиях рыночной экономики от каждого человека требуется высокий уровень профессионализма и такие деловые качества как предприимчивость, способность ориентироваться в той или иной ситуации, быстро и безошибочно принимать решение. Базовый курс математики призван служить одной из основ развития личностных качеств каждого отдельного ученика и подготовки его к жизни, предстоящей трудовой деятельности.

Математика объективно является наиболее сложным школьным предметом, требующим более интенсивной мыслительной работы, более высокого уровня обобщений и абстрагирующей деятельности. Поэтому невозможно добиться усвоения математического материала всеми учащимися на одинаково высоком уровне. Даже ориентировка на «среднего» ученика в обучении математике приводит к снижению успеваемости в классе, к издержкам воспитательного характера у ряда школьников (потеря интереса к математике, порождение безответственности, нежелание учиться и др.). Нынешнее отношение учащихся к математике характеризуется снижением ее популярности среди школьников.

Признание математики в качестве обязательного компонента общего среднего образования в большей мере обуславливает необходимость осуществления дифференцированного подхода к учащимся – как к определенным их группам (сильным, средним, слабым), так и к отдельным ученикам. Дифференцированный (групповой и индивидуальный) подход становится необходим не только для поднятия успеваемости слабых учеников, но и для развития сильных учеников, причем его понимание не должно сводиться лишь к эпизодическому добавлению в процессе обучения слабо успевающим учащимся тренировочных задач, а более подготовленным – задач повышенной трудности. Более полное понимание дифференциации обучения предполагает использование ее на различных этапах изучения математического материала: подготовки учащихся к изучению нового, введения нового, применения к решению задач, этапа контроля за усвоением и др. Дифференцировано может быть содержание изучаемого материала (выделение обязательного и дополнительного); дифференцировать можно методы (приемы) обучения, варьируя ими с целью оказания различной степени индивидуальной или групповой помощи ученикам при организации самостоятельной работы по изучению нового, при решении задач и др.; дифференцировать можно средства и формы обучения. Опыт передовых учителей показывает, что дифференциация может затрагивать все элементы методической системы обучения и в этом случае она дает наибольший эффект в условиях обычного класса.

В концепции школьного математического образования дифференциация рассматривается как составная часть и необходимое условие гуманизации и демократизации образования, его перевода на новую культурообразующую базу.

Уровневая дифференциация выражается в том, что обучение учащихся одного и того же класса в рамках одной программы и учебника проходит на различных уровнях усвоения учебного материала. Определяющим при этом является уровень обязательной подготовки (базовый уровень), который задается образцами типовых задач. На основе этого уровня формируется более высокий уровень овладения материалом – уровень возможностей. Предпринята попытка в разработке образцов задач для итоговых требований к математической подготовке учащихся, претендующих на более продвинутый уровень подготовки.

Дифференциация как система.

Дифференциацию можно рассматривать с нескольких точек зрения:

  1. Процесса обучения (отбор форм, методов и приемов обучения);

  2. Содержания образования (создание учебных планов, программ, учебной литературы и составления заданий, предъявляемых учащимся);

  3. Построения школьной системы (формирование различных типов школ и классов). Существует два основных вида дифференциации: уровневая и профильная.

Уровни усвоения

Компоненты задачи

Деятельность ученика

Цель

Задачная ситуация

Способ решения (действия)

0

Узнавание, понимание

задана

Задана (типовая)

Внешне задан в виде правила (алгоритма)

По аналогии с решенной задачей

I

Алгоритмический

Задана

Задана (типовая)

Явно не задан, воспроизводится по памяти, как ранее известный в виде алгоритма

Репродуктивно-алгоритмическая

II

Эвристический

Задана

Задана неявно, требуется уточнение (не типовая, но знакомая)

Не задан, требуется видоизменить известный или получить новый комбинацией из нескольких известных

Продуктивно-эвристическая

III

Творческий

Задана в общей форме

Не задана, требуется найти подходящую ситуацию (проблемная)

Не задан, создается новый, ранее не известный

Продуктивно-творческая, исследовательская

Проиллюстрируем уровневую дифференциацию на задачах, в которых предлагается ученику представить выражение в виде квадрата двучлена (7 класс):

В основу вычленения уровневой дифференциации задач может быть положен критерий субъективной новизны ситуации для решающего. Выделим три уровня сложности учебных задач:

I уровень: x2 +2x+1

Задача I уровня является типовой для учащихся;

Задачи решаются учащимися на основе только что изученных знаний и способов деятельности, которые они воспроизводят по памяти. Это типовые задачи на непосредственное применение теорем, определений, правил, алгоритмов, формул и т. п. в различных конкретных ситуациях, не требующих преобразующего воспроизведения структуры усвоенных знаний. Готовность учащихся выполнять воспроизводящую деятельность этого уровня рассматривается как обязательный результат обучения, который вычленен в большинстве школьных учебников.

II уровень: 2(x2 +x)-(x-1)(x+1)

Задача II уровня требует от ученика последовательного выполнения нескольких тождественных преобразований I уровня, известных учащимся;

Задачи требуют от учащихся применения усвоенных знаний и способов деятельности в нетиповой, но знакомой им ситуации, которое сопровождается преобразующим воспроизведением. Ученик, комбинируя известные приемы решения задач, уточняет, проясняет задачную ситуацию и выбирает соответствующий способ деятельности. К такого рода задачам относятся так называемые комбинированные задачи, требующие применения различных элементов знаний, уже усвоенных на I уровне.

III уровень: x4 +2x2 +1

Для решения задачи III уровня необходимо ученику представить степень как первую степень новой переменной (операция I уровня), а в другой ситуации, которая ранее не встречалась.

Задачи этого уровня требуют от ученика преобразующей деятельности при избирательном применении усвоенных знаний и приемов решения в относительно новой для него ситуации, заключающейся в использовании действий I и II уровней, в конструировании новых для ученика систем, позволяющих решить предложенную задачу. В процессе поиска решения задачи ученик, используя интуицию, смекалку, сообразительность, сам выходит на неизвестный для себя способ решения, открывая новые знания. Деятельность ученика постепенно освобождается от готовых образцов, сложившихся установок и приобретает гибкий поисковый характер.

Охарактеризованные три уровня умения решать математические задачи характерны для итогового контроля по теме (разделу), курсу. В процессе усвоения математических знаний необходимо выделить еще один уровень (в таблице он назван нулевым), который показывает сформированность их на уровне понимания, узнавания. Ученик решает типовую задачу на основе образца или подробной инструкции, пользуется учебником, справочником, записями в тетради. На этом уровне он демонстрирует свое понимание соответствия условия и цели задачи тому способу решения, который использует, но еще на его запоминание.

Следует отметить, что предлагаемый критерий новизны может применяться лишь с учетом содержания учебного материала, способов решения задач предыдущего опыта учащегося. Комбинированная задача, которая прошла через опыт ученика, становится задачей II уровня, а задача, совершенно не знакомая ученику, содержащая эвристические моменты в решении, является задачей III уровня. Сложнейшая олимпиадная задача перестает быть задачей III уровня, как только она решены на уроке и понята учеником, стала достоянием его опыта.

Перечислим ряд условий, выполнение которых необходимо для успешного и эффективного осуществления уровневой дифференциации:

  1. Выделенные уровни усвоения материала и в первую очередь обязательные результаты обучения должны быть открытыми для учащихся. Если цели известны и посильны ученику, а их достижения поощряется, то подросток стремится к их выполнению, т. е. формируются положительные мотивы учения, сознательное отношение к учебной работе; можно привлечь самооценку ученика для организации дифференцированной работы.

Ознакомление учащихся с уровнями усвоения материала позволяет им рассчитывать свои силы, в ходе изучения темы они могут самостоятельно и осознанно оценить свои знания и возможности.

  1. Наличие определенных «ножниц» между уровнем требований и уровнем обучения. Уровень требования должен быть в целом существенно выше, чем обязательный уровень усвоения материала. То есть уровневая дифференциация осуществляется не за счет того, что, предлагая ученикам одинаковый объем материала, предъявляют различные уровни требований к его усвоению.

  2. В обучении должна быть обеспечена последовательность в продвижении ученика по уровням. То есть не следует предъявлять более высоких требований тем учащимся, которые не достигли уровня обязательной подготовки, но при этом не следует необоснованно задерживать остальных на этом этапе.

Добровольность в выборе уровня усвоения и отчетности. Уровневую дифференциацию можно организовать в разнообразных формах. Основной путь осуществления дифференциации обучения – формирование мобильных групп учащихся. По каким же показателям распределять учащихся в группы? Предлагается в качестве таких показателей взять «темп овладения материалом» и «способность самостоятельно применять усвоенные знания и умения». Выделяют четыре группы учеников: с высоким, средним и низким темпом продвижения в обучении; не успевающие учащиеся, значительно отстающие в умственном развитии от сверстников и имеющие существенные проблемы в знаниях.

Каждый ученик имеет право добровольно выбрать уровень усвоения и отчетности в результатах своего учебного труда по каждой конкретной теме(разделу), а возможно и курсу в целом. Задачей учителя является обеспечение поступательного движения учащихся к более высокому уровню знаний и умений.

Следует подчеркнуть, что на каждом уроке учитель не имеет возможностей для полного и всестороннего учета индивидуальных особенностей всех учащихся. Ориентация на обязательные результаты обучения постоянно поддерживает подготовку школьников на опорном уровне, это позволяет ученику при возможности и возникшем интересе перейти на более высокие уровни на любом этапе обучения. Кроме этого, так как каждый ученик работает на посильном для него уровне трудности, он лучше осознает свои ближайшие цели и задачи. Поэтому ведущим видом является уровневая дифференциация. Из анализа психолого-педагогической и методической литературы, а также изучения опыта работы учителей видно, что уровневую дифференциацию можно организовать в разнообразных формах, которые существенно зависят от особенностей класса, от возраста учащихся и др.

Уровневая дифференциация способствует более полному учету индивидуальных запросов учащихся, развитию их интересов и способностей. В условиях дифференцированного обучения ученик реализует право выбора предмета или уровня обучения в соответствии со своими склонностями.

Автор
Дата добавления 02.02.2017
Раздел Алгебра
Подраздел Статья
Просмотров240
Номер материала 2318
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.