Уроки математики / Презентация / Презентация к уроку геометрии на тему "Теорема Пифагора"

Презентация к уроку геометрии на тему "Теорема Пифагора"

ТЕОРЕМА ПИФАГОРА Уделом истины не может быть забвенье, Как только мир ее увид...
Цель урока Учебно – познавательная: Обобщение и расширение знаний учащихся по...
Цель урока развивающая: Развитие умений самостоятельно работать с дополнитель...
Опрос по теории Для какого треугольника справедлива теорема Пифагора? Какой т...
А В С Прямоугольный треугольник
А С В Определение Треугольник, в котором один из углов прямой называется прям...
А В С катет катет гипотенуза
А В С катет катет гипотенуза Определение Гипотенуза это сторона прямоугольног...
А С В Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен...
Задача 1 А Н К С Р Задача2 45° Задачи по готовым чертежам ? 5 А 45° ? K 7 M
Задачи по готовым чертежам Задача 3 Задача 4 Задача5 С Х У М А В 30° R 8 N 6...
Пифагор Великий ученый Пифагор родился около 570 г. до н.э. в Древней Греции...
История теоремы Пифагора Пифагор сделал много важных открытий, но наибольшую...
Самостоятельная работа Вариант 1 Задача 1 О М К 13 Задача 2 ? 5 10 ? 30° S L...
Ключ к ответу задание 1 задание 2 задание 3 Вариант 1 12 5√3 5 Вариант 2 12 3...
1.Задача индийского математика XII века Бхаскары На берегу реки рос тополь од...
1.Решение задачи Бхаскары С А 4 М В • - - 3 Дано: АМС – прямоугольный АС = 3...
2. Практическая работа Землемеры Древнего Египта для построения прямого угла...
Выполнение практической работы • • • • • • • • • • • • 3 4 5 52 = 32 + 42
3. Задача на построение Как, используя теорему Пифагора, построить отрезок дл...
3. Решение задачи на построение 1 1 √2 1 √3
4. Задача древних индусов Над озером тихим, С полфута размером, Высился лотос...
Решение задачи древних индусов 0,5 ф 2 ф Х Х+ 0,5 А В С К . АК – длина лотоса...
5. Задача Диагональ телевизионного экрана 50 см, длины его сторон относятся к...
Решение задачи № 5 Пусть х см –длина одной части, тогда 3х см- длина одной ст...
Значение теоремы Пифагора Теорема Пифагора- это одна из главных и, можно сказ...
Значение теоремы Пифагора В конце 19 века высказывались предположения о сущес...
Дополнительные задачи « Имеется водоем со стороной в 1 чжан = 10 чи. В центре...
Дополнителььные задачи Задача №2 ( Задача из учебника «Арифметика» Леонтия Ма...
О теореме Пифагора Немецкий писатель-романист А. Шамиссо, написал следующие с...
О теореме Пифагора Уделом истины не может быть забвенье, Как только мир ее ув...
Один из способов доказательства Квадрат, построенный на гипотенузе, содержит...
Спасибо за внимание!
1 из 33

Описание презентации по отдельным слайдам:

№ слайда 1

ТЕОРЕМА ПИФАГОРА Уделом истины не может быть забвенье, Как только мир ее увидит взор, И теорема та, что дал нам Пифагор, Верна теперь, как в день ее рожденья. Шамиссо

№ слайда 2

Цель урока Учебно – познавательная: Обобщение и расширение знаний учащихся по данной теме; Формирование умений применять теорему Пифагора в стандартных и нестандартных ситуациях; Знакомство с историей возникновения теоремы Развитие познавательного интереса у учащихся через решение нестандартных , исторических задач

№ слайда 3

Цель урока развивающая: Развитие умений самостоятельно работать с дополнительной литературой, применять Интернет технологии, создавать компьютерные презентации, проводить отбор необходимого для урока материала ; Развитие грамотной математической речи; Проведение самооценки учебной деятельности воспитательная: воспитание настойчивости и трудолюбия

№ слайда 4

Опрос по теории Для какого треугольника справедлива теорема Пифагора? Какой треугольник называется прямоугольным? Как называются стороны прямоугольного треугольника? Дайте определение гипотенузы Дайте определение катета Сформулируйте теорему Пифагора и теорему, обратную теореме Пифагора

№ слайда 5

А В С Прямоугольный треугольник

№ слайда 6

А С В Определение Треугольник, в котором один из углов прямой называется прямоугольным

№ слайда 7

А В С катет катет гипотенуза

№ слайда 8

А В С катет катет гипотенуза Определение Гипотенуза это сторона прямоугольного треугольника, лежащая против прямого угла Катеты это стороны прямого угла в прямоугольном треугольнике

№ слайда 9

А С В Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов а2 + b2 = с2 Обратная теорема Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то этот треугольник прямоугольный а b c

№ слайда 10

Задача 1 А Н К С Р Задача2 45° Задачи по готовым чертежам ? 5 А 45° ? K 7 M

№ слайда 11

Задачи по готовым чертежам Задача 3 Задача 4 Задача5 С Х У М А В 30° R 8 N 6 F L ? = = 30° F N ? D G ? 4 4 ?

№ слайда 12

Пифагор Великий ученый Пифагор родился около 570 г. до н.э. в Древней Греции на острове Самосе, поэтому его называют Пифагором Самосским.. По многим свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности.

№ слайда 13

История теоремы Пифагора Пифагор сделал много важных открытий, но наибольшую славу учёному принесла доказанная им теорема, которая сейчас носит его имя. Интересна история теоремы Пифагора.. Долгое время считали, что эта теорема до Пифагора не была известна и приписывали ее доказательство Пифагору, поэтому она и носит его имя. Это название сохранилось и поныне. Но оказывается теорема была известна задолго до Пифагора.

№ слайда 14

Самостоятельная работа Вариант 1 Задача 1 О М К 13 Задача 2 ? 5 10 ? 30° S L G Задача 3 В А ? D С ABCD – ромб, BD =6; АС = 8 Вариант 2 М F N L 15 ? _ _ MN=18 В ? К А С 3 S L C G 4 ? О 30°

№ слайда 15

Ключ к ответу задание 1 задание 2 задание 3 Вариант 1 12 5√3 5 Вариант 2 12 3√3 2√2

№ слайда 16

1.Задача индийского математика XII века Бхаскары На берегу реки рос тополь одинокий. Вдруг порыв ветра его ствол надломил. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у самой реки. Осталось три фута всего от ствола. Прошу тебя скоро теперь мне скажи: « У тополя как велика высота?»

№ слайда 17

1.Решение задачи Бхаскары С А 4 М В • - - 3 Дано: АМС – прямоугольный АС = 3 фута АМ = 4 фута Найти: АВ Решение: 1) СМ2 = АМ2 + АС2 (т.Пифагора) СМ2 = 42 + 32 СМ2 = 16+9 СМ2 = 25 СМ = 5 СВ = СМ = 5 ф (по условию) 2) АВ = АС+СВ = 3 + 5= 8 ф≈[ 1фут ≈ 30,5 см]≈244cм. Ответ: высота тополя ≈244cм или ≈ 2м44см.

№ слайда 18

2. Практическая работа Землемеры Древнего Египта для построения прямого угла использовали бечевку, разделенную узлами на 12 равных частей. Покажите как они это делали. ●

№ слайда 19

Выполнение практической работы • • • • • • • • • • • • 3 4 5 52 = 32 + 42

№ слайда 20

3. Задача на построение Как, используя теорему Пифагора, построить отрезок длиной √2, √3 ?

№ слайда 21

3. Решение задачи на построение 1 1 √2 1 √3

№ слайда 22

4. Задача древних индусов Над озером тихим, С полфута размером, Высился лотоса цвет. Он рос одиноко. И ветер порывом Отнес его в сторону. Нет боле цветка над водой. Нашел же рыбак его Ранней весной В двух футах от места, где рос Итак: предложу я вопрос: Как озера вода здесь глубока?

№ слайда 23

Решение задачи древних индусов 0,5 ф 2 ф Х Х+ 0,5 А В С К . АК – длина лотоса Т.к. лотос отклонился, то АК = АС Пусть АВ=Х- глубина озера АВС – прямоугольный. АС2 = СВ2 + АВ2 (т.Пифагора) (Х+ 0,5)2=22 + Х2 Х2+ Х + 0,25 = 4 +Х2 Х = 3,75 АВ= 3,75(ф) Ответ: глубина озера 3,75 футов.

№ слайда 24

5. Задача Диагональ телевизионного экрана 50 см, длины его сторон относятся как 3:4. Чему равны длины сторон экрана? Войдет ли телевизор в нишу стенки, если размеры этой ниши 49см х 35см?

№ слайда 25

Решение задачи № 5 Пусть х см –длина одной части, тогда 3х см- длина одной стороны, 4х см – длина другой стороны. По теореме Пифагора имеем: (3х)2 + (4х)2 =2500 25х2 = 2500 х2 = 100 х= 10 3х = 30(см) – длина одной стороны 4х = 40(см) - длина второй стороны Ответ: размеры телевизора подходят.

№ слайда 26

Значение теоремы Пифагора Теорема Пифагора- это одна из главных и, можно сказать , самая главная теорема геометрии. Ее можно применять для построения отрезков, длины которых заданы иррациональным числом; можно строить прямые углы подобно тому, как это делали египтяне при строительстве древних сооружений; в различных областях человеческой деятельности.

№ слайда 27

Значение теоремы Пифагора В конце 19 века высказывались предположения о существовании обитателей Марса подобных человеку.. Было решено передать обитателям Марса сигнал в виде теоремы Пифагора. Математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал

№ слайда 28

Дополнительные задачи « Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша?». Задача № 1 (Задача из китайской «Математики в девяти книгах» )

№ слайда 29

Дополнителььные задачи Задача №2 ( Задача из учебника «Арифметика» Леонтия Магницкого) «Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать».

№ слайда 30

О теореме Пифагора Немецкий писатель-романист А. Шамиссо, написал следующие стихи. Пребудет вечно истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век.   Обильно было жертвоприношенье Богам от Пифагора. Сто быков. Он отдал на закланье и сожженье За сета луч, пришедший с облаков.   Поэтому всегда с тех самых пор, Чуть истина рождается на свет, Быки ревут, ее почуя вслед, От страха что вселил в них Пифагор.

№ слайда 31

О теореме Пифагора Уделом истины не может быть забвенье, Как только мир ее увидит взор, И теорема та, что дал нам Пифагор, Верна теперь, как в день ее рожденья. За светлый луч с небес вознес благодаренье Мудрец богам не так, как было до тех пор. Ведь целых сто быков послал он под топор, Чтоб их сожгли как жертвоприношенье. Быки с тех пор, как только весть услышат, Что новой истины уже следы видны, Отчаянно мычат и ужаса полны: Им Пифагор навек внушил тревогу. Не в силах преградить той истине дорогу, Они, закрыв глаза, дрожат и еле дышат. (А. фон Шамиссо, перевод Хованского)

№ слайда 32

Один из способов доказательства Квадрат, построенный на гипотенузе, содержит четыре треугольника. А на каждом катете построен квадрат, содержащий два треугольника. Из рисунка видно, что площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах. Для равнобедренных прямоугольных треугольников

№ слайда 33

Спасибо за внимание!

Автор
Дата добавления 26.03.2017
Раздел Геометрия
Подраздел Презентация
Просмотров739
Номер материала 3488
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.