Уроки математики / Презентация / Презентация "Расстояние от точки до плоскости"

Презентация "Расстояние от точки до плоскости"

Документы в архиве:

Название документа 19.

A ∉ α ⇒ ∃ c, A ∈ c, c ⏊ α α A c
α A
α A
α A H
Определение Перпендикуляром, проведённым из точки А к плоскости α, называется...
α A H M
α A H M
α A H M
Определение Отрезок АМ называется наклонной, проведённой из точки А к плоскос...
α A H M
α A H M
Определение Отрезок МН называется проекцией наклонной АМ на плоскость α α A H...
α A H M
α A H M AH AM < ?
α A H M
α A H M ∆AHM:
α A H M ∆AHM:
α A H M ∆AHM: AH ⏊ α
α A H M ∆AHM: AH ⏊ α AH AM < АН — катет АM — гипотенуза
α A H M P K
α A H M P K AH — наименьшее расстояние от точки A до плоскости α
Определение Расстоянием от точки А до плоскости α называется длина перпендику...
Задача Дано: AO = 3 ед. AO ⏊ α α A O M H 3 AM = АН = 5 ед. 5 5 Найти: MN Реше...
Замечание 1 Пусть даны две параллельные плоскости α и β. Тогда все точки плос...
Замечание 1 Пусть даны две параллельные плоскости α и β. Тогда все точки плос...
Определение Расстоянием между параллельными плоскостями называется расстояние...
Определение Расстоянием между параллельными плоскостями называется расстояние...
Замечание 2 Если прямая параллельна плоскости, то все точки прямой равноудале...
Определение Длина перпендикуляра  АО  называется расстоянием между прямой а и...
Определение Длина перпендикуляра  АО  называется расстоянием между прямой а и...
Определение Длина перпендикуляра  АО  называется расстоянием между прямой а и...
A Задача Дано: МН ∥ ABCD H M O B C D МН = 6 см ∠МНО = 45° 45° Найти: MO Решен...
Замечание 3 Пусть прямые а и b скрещивающиеся. Тогда плоскость α, проходящая...
Определение Расстоянием между скрещивающимися прямыми называется расстояние м...
1 из 35

Описание презентации по отдельным слайдам:

№ слайда 1

№ слайда 2

A ∉ α ⇒ ∃ c, A ∈ c, c ⏊ α α A c

№ слайда 3

α A

№ слайда 4

α A

№ слайда 5

α A H

№ слайда 6

Определение Перпендикуляром, проведённым из точки А к плоскости α, называется отрезок АН. Точка Н называется основанием этого перпендикуляра α A H A ⏊ α AH — перпендикуляр H — основание перпендикуляра

№ слайда 7

α A H M

№ слайда 8

α A H M

№ слайда 9

α A H M

№ слайда 10

Определение Отрезок АМ называется наклонной, проведённой из точки А к плоскости α. Точка М называется основанием наклонной α A H M AM — наклонная к плоскости M — основание наклонной

№ слайда 11

α A H M

№ слайда 12

α A H M

№ слайда 13

Определение Отрезок МН называется проекцией наклонной АМ на плоскость α α A H M MH — проекция наклонной AM

№ слайда 14

α A H M

№ слайда 15

α A H M AH AM < ?

№ слайда 16

α A H M

№ слайда 17

α A H M ∆AHM:

№ слайда 18

α A H M ∆AHM:

№ слайда 19

α A H M ∆AHM: AH ⏊ α

№ слайда 20

α A H M ∆AHM: AH ⏊ α AH AM < АН — катет АM — гипотенуза

№ слайда 21

α A H M P K

№ слайда 22

α A H M P K AH — наименьшее расстояние от точки A до плоскости α

№ слайда 23

Определение Расстоянием от точки А до плоскости α называется длина перпендикуляра АН, проведённого к плоскости α α A H

№ слайда 24

Задача Дано: AO = 3 ед. AO ⏊ α α A O M H 3 AM = АН = 5 ед. 5 5 Найти: MN Решение: ∆АОМ: ОМ² = АМ² – АО² ОМ² = 25 – 9 = 16 МН = 2 · ОМ = 2 · 4 = 8 (ед.) Ответ: МН = 8 ед.

№ слайда 25

Замечание 1 Пусть даны две параллельные плоскости α и β. Тогда все точки плоскости α будут равноудалены от плоскости β α A M β H O AH ∥ MO

№ слайда 26

Замечание 1 Пусть даны две параллельные плоскости α и β. Тогда все точки плоскости α будут равноудалены от плоскости β α A M β H O Отрезки параллельных прямых, заключённые между параллельными плоскостями, равны

№ слайда 27

Определение Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой α A M β H O

№ слайда 28

Определение Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой α A M β H O

№ слайда 29

Замечание 2 Если прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости a A α O

№ слайда 30

Определение Длина перпендикуляра  АО  называется расстоянием между прямой а и параллельной ей плоскостью α a A α O

№ слайда 31

Определение Длина перпендикуляра  АО  называется расстоянием между прямой а и параллельной ей плоскостью α a A α O

№ слайда 32

Определение Длина перпендикуляра  АО  называется расстоянием между прямой а и параллельной ей плоскостью α a A α O

№ слайда 33

A Задача Дано: МН ∥ ABCD H M O B C D МН = 6 см ∠МНО = 45° 45° Найти: MO Решение: ∆MHO — прямоуг. tg ∠МНО = MO ∶ MH ⇒ ⇒ МO = MH · tg ∠МНО МО = tg 45° · 6 = 1 · 6 = 6 (см) Ответ: МО = 6 см 6 см

№ слайда 34

Замечание 3 Пусть прямые а и b скрещивающиеся. Тогда плоскость α, проходящая через прямую а, параллельна прямой b a b α

№ слайда 35

Определение Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой a b α M O c

Краткое описание документа:

Презентация «Расстояние от точки до плоскости» детально рассматривает понятие расстояния от точки до плоскости, формирует умение использовать знания о расстояния между точками при решении геометрических задач. В ходе презентации с помощью анимации производятся построения, раскрывающие смысл понятия расстояния между точкой и плоскостью, дается определение перпендикуляра и наклонной, проведенных от точки до плоскости, проекции наклонной и расстояния от точки до плоскости, несколько важных утверждений по теме, пример решения задачи.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

В презентации широко используются анимационные эффекты, с помощью которых учитель может продемонстрировать отличия понятий перпендикуляра, наклонной, проекции. Такой способ подачи учебного материала очень эффективный и ускоряет достижение целей обучения. Определения, которые требуют запоминания, выделены в рамку и цветом. Такое выделение помогает лучше запомнить информацию, лучше ее усвоить.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

Презентация начинается с построения изображения плоскости α, закрашенной зеленым цветом, и некоторой точки А, не принадлежащей ей. Через точку А проводится прямая с, перпендикулярная плоскости α. На рисунке обозначено, что между плоскостью и прямой с образуется угол 90°. Далее на рисунке изображается еще плоскость α, закрашенная синим цветом, не принадлежащая ей точка А и прямая, пересекающаяся с плоскостью в точке Н, выделяя полученный таким образом отрезок АН. Таким образом вводится понятие перпендикуляра, проведенного из точки А к плоскости, который представляет собой отрезок АН с основанием в точке Н. данное определение отображено на отдельном слайде и выделено в рамке. на рисунке отдельно указаны элементы построения перпендикуляра к плоскости – сам перпендикуляр, основание, а также обозначение А┴а.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

На следующем слайде к продемонстрированному рисунку плоскости и проведенного к ней перпендикуляра АН добавляется точка М, не принадлежащая перпендикуляру, но лежащая на плоскости α. От точки А к М проводится отрезок АМ, выделенный цветом. Таким образом вводится понятие наклонной, определение которой дано на следующем слайде. Там указано, что АМ является наклонной, проведенной из А к плоскости α с основанием в точке М. Под определением указаны названия введенных понятий – наклонной и основания наклонной.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

На следующем слайде рисунок дополняется отрезком МН, выделенным красным цветом. Это проекция, которая на слайде 13 определяется как результат построения на данном рисунке – отрезок МН. Под определением демонстрируется сделанный рисунок и указано проекция МН наклонной АМ. Далее с помощью анимации ставится вопрос о том, является ли перпендикуляр меньшим отрезком, чем наклонная. Ответ на этот вопрос можно получить, рассматривая треугольник ΔАНМ. Обращается внимание на величину угла ∠АНМ=90°. То есть треугольник является прямоугольным, а в прямоугольном треугольнике катет всегда меньше гипотенузы, поэтому на экране отображается вывод АН<АМ. Демонстрируется построение множества наклонных, опущенных из точки А на плоскость – АМ, АК, АР. Однако при этом перпендикуляр АН представляет наименьшее расстояние от точки А до плоскости α. Далее демонстрируется текст определения расстояния от точки А до плоскости α на основе сделанного построения как длины перпендикуляра АН.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

Описывается решение задачи, в которой дана плоскость α и проведенный к ней перпендикуляр АО., составляющий 3 единицы, при этом наклонные АМ и АН равны 5 единицам. Необходимо найти расстояние между основаниями наклонной – длину МН. При решении задания напоминается правило для треугольника ΔАОМ – ОМ2=АМ2-АО2. Подставляя известные по условию значения, получаем ОМ=√(25-9)=4. Так как МН=2·ОМ, то МН=8 единиц.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

На следующем слайде делается замечание о свойствах расстояния между параллельными плоскостями – они являются равноудаленными друг от друга, к тому же перпендикуляры параллельны между собой. Также указывается на равенство параллельных отрезков, заключенных между плоскостями. Дается определение расстояния между параллельными плоскостями как расстояния между произвольными точками одной и другой, учитывая перпендикулярность полученного отрезка к обеим плоскостям.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

Далее указано замечание о свойствах расстояния между плоскостью и параллельной ей прямой – отмечается равноудаленность всех точек этой прямой до плоскости. Далее продемонстрировано определение расстояния между прямой и параллельной плоскостью α как длина перпендикуляра АО. Определение сопровождается рисунком, на котором изображена плоскость α, параллельная прямая а и перпендикуляр, проведенный из точки А, принадлежащей прямой, к плоскости.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

В качестве примера приводится описание решения задачи, в которой дана плоскость ABCD, отрезок МН=6 см, расположенный паралельно плоскости. Из М опущен перпендикуляр на плоскость с основаним в точке О. При этом угол ∠МНО=45°. Нужно найти расстояние от М до О. При решении задачи рассматривается образованный при построении треугольник ОМН. Это прямоугольный треугольник, поэтому tg∠МНО=МО/МН. Отсюда МО= МН· tg∠МНО, то есть МО= tg 45°·6=6 см.

Презентация "Расстояние от точки до плоскости"Презентация "Расстояние от точки до плоскости"

К данной теме дается еще одно важное замечание, указывающее на то, что если одна из скрещивающихся прямых лежит на плоскости, то вторая прямая параллельна этой плоскости. Также представлено определение расстояния между скрещивающимися прямыми, равного расстоянию между одной прямой и плоскостью, в которой лежит вторая прямая.

Презентация «Расстояние от точки до плоскости» может применяться учителем как средство повышения эффективности традиционного урока геометрии, используя наглядный материал. Также презентация может стать инструментом учителя, осуществляющего дистанционное обучение. При необходимости ученику освоить тему самостоятельно или углубить понимание предмета, материал может быть рекомендован для самостоятельной работы.

Автор
Дата добавления 28.10.2014
Раздел Геометрия
Подраздел Презентация
Просмотров1452
Номер материала 891
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.