Уроки математики / Видеоурок / Урок «Неравенства с двумя переменными»

Урок «Неравенства с двумя переменными»

Краткое описание документа:

Видеоурок «Неравенства с двумя переменными» предназначен для обучения алгебре по данной теме в 9 классе общеобразовательной школы. Видеоурок содержит описание теоретических основ решения неравенств, подробно описывает процесс решения неравенств графическим способом, его особенности, демонстрирует примеры решения заданий по теме. Задача данного видеоурока – при помощи наглядного представления информации облегчить понимание материала, способствовать формированию умений в решении задач с применением изученных математических методов.

Основными инструментами видеоурока являются использование анимации в представлении графиков и теоретических сведений, выделение понятий, особенностей, важных для понимания и запоминания материала, цветом и другими графическими способами, голосовое сопровождение объяснения с целью более легкого запоминания информации и формирования умения использования математического языка.

Урок «Неравенства с двумя переменными»

Видеоурок начинается и представления темы и примера, демонстрирующего понятие решения неравенства. Для формирования понимания смысла понятия решения представлено неравенство 3х2-у<10, в которое подставляется пара значений х=2 и у=6. Демонстрируется, как после подстановки данных значений неравенство становится верным. Понятие решения данного неравенства как пары значений (2;6) выведено на экран, подчеркивая его важность. Затем представляется определение рассмотренного понятия для запоминания его учениками или записи в тетрадь.

Важной частью умения решать неравенства является умение изобразить на координатной плоскости множество его решений. Формирование такого умения в данном уроке начинается с демонстрации нахождения множества решений линейных неравенств ax+by<c и ax+by>c. Отмечаются особенности задания неравенства – х и у являются переменными, a, b, c – некоторыми числами, среди которых a и b не равны нулю.

Урок «Неравенства с двумя переменными»

Примером такого неравенства является х+3у>6. Чтобы преобразовать неравенство в равносильное неравенство, отражающее зависимость значений у от значений х, обе части неравенства делятся на 3, у остается в одной части уравнения, а х переносится в другую. Произвольно выбирается значение х=3 для подстановки в неравенство. Отмечается, что данное значение х подставить в неравенство и заменить знак неравенства знаком равенства, можно найти соответствующее значение у=1. Пара (3;1) будет являться решением уравнения у=-(1/3)х+2. Если же подставлять любые значения у, большие 1, то неравенство с данным значением х будет верно: (3;2), (3;8) и др. Аналогично данному процессу нахождения решения рассматривается общий случай для поиска множества решений данного неравенства. Поиск множества решений неравенства начинается с подстановки некоторого значения х0. В правой части неравенства получается выражение –(1/3)х0+2. Некоторая пара чисел (х00) является решением уравнения у=–(1/3)х+2. Соответственно решениями неравенства у>–(1/3)х0+2 будут соответствующие пары значений с х0, где у больше значений у0. То есть решениями этого неравенства будут пары значений (х0;у).

Чтобы найти на координатной плоскости множество решений неравенства х+3у>6, на ней демонстрируется построение прямой, соответствующей уравнению у=-(1/3)х+2. На данной прямой отмечается точка М с координатами (х00). При этом отмечается, что все точки К(х0;у) с ординатами у>у0, то есть расположенные выше данной прямой, будут удовлетворять условиям неравенства у>-(1/3)х+2. Из анализа делается вывод о том, что данным неравенство задается множество точек, которые располагаются выше прямой у=-(1/3)х+2. Это множество точек составляют полуплоскость над данной прямой. Так как неравенство строгое, сама прямая не входит в число решений. На рисунке данный факт отмечен пунктирным обозначением.

Обобщая данные, полученные в результате описания решения неравенства х+3у>6, можно говорить о том, что прямая х+3у=6 разбивается плоскость на две полуплоскости, при этом расположенная выше полуплоскость отражает множество значений удовлетворяющих неравенству х+3у>6, а распложенная ниже прямой – решение неравенства х+3у<6. Данный вывод является важным для понимания, каким образом решаются неравенства, поэтому выведен на экран отдельно в рамке.

Урок «Неравенства с двумя переменными»

Далее рассматривается пример решения нестрогого неравенства второй степени у>=(х-3)2. Для определения множества решений рядом на рисунке строится парабола у=(х-3)2. На параболе отмечается точка М(х00), значения которой будут решениями уравнения у=(х-3)2. В данной точке строится перпендикуляр, на котором выше параболы отмечается точка К(х0;у), которая будет решением неравенства у>(х-3)2. Можно сделать вывод о том, что исходному неравенству удовлетворяют координаты точек, расположенных на данной параболе у=(х-3)2 и выше ее. На рисунке данную область решений отмечают штрихованием.

Урок «Неравенства с двумя переменными»

Следующим примером, демонстрирующим положение на плоскости точек, являющихся решением неравенства второй степени, является описание решения неравенства х22<=9. На координатной плоскости строится окружность радиусом 3 с центром в начале координат. Отмечается, что решениями уравнения будут точки, сумма квадратов координат которых не превышает квадрата радиуса. Также отмечается, что окружность х22=9 разбивает плоскость на области внутри окружности и вне круга. Очевидно, что множество точек внутренней части круга удовлетворяют неравенству х22<9, а внешняя часть – неравенству х22>9. Соответственно, решением исходного неравенства будет множество точек окружности и области внутри ее.

Далее рассматривается решение уравнения ху>8. На координатной плоскости рядом с заданием строится гипербола, удовлетворяющая уравнению ху=8. Отмечается точка М(х00), принадлежащая гиперболе и К(х0;у) выше ее параллельно оси у. Очевидно, что координаты точки К соответствуют неравенству ху>8, так как произведение координат данной точки превосходит 8. Указывается, что таким же способом доказывается соответствие точек, принадлежащих области В, неравенству ху<8. Следовательно, решением неравенства ху>8 будет множество точек, лежащих в областях А и С.

Видеоурок «Неравенства с двумя переменными» может послужить наглядным пособием учителю на уроке. Также материал поможет ученику, самостоятельно осваивающему материал. Полезно использование видеоурока при дистанционном обучении. 

Автор
Дата добавления 29.08.2014
Раздел Алгебра
Подраздел Видеоурок
Просмотров10097
Номер материала 665
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.