Уроки математики / Видеоурок / Урок «Системы неравенств с двумя переменными»

Урок «Системы неравенств с двумя переменными»

Краткое описание документа:

Видеоурок «Системы неравенств с двумя переменными» содержит наглядный учебный материал по данной теме. В урок включено рассмотрение понятия о решении системы неравенств с двумя переменными, примеров решения подобных систем графическим способом. Задача данного видеоурока – формировать умение учеников решать системы неравенств с двумя переменными графическим способом, облегчить понимание процесса поиска решений таких систем и запоминания метода решения.

Урок «Системы неравенств с двумя переменными»

Каждое описание решения сопровождается рисунками, которые отображают решение задачи на координатной плоскости. На таких рисунках наглядно показаны особенности построения графиков и расположения точек, соответствующих решению. Все важные детали и понятия выделены при помощи цвета. Таким образом, видеоурок является удобным инструментом для решения задач учителя на уроке, освобождает учителя от подачи стандартного блока материала для проведения индивидуальной работы с учениками.

Видеоурок начинается с представления темы и рассмотрения примера поиска решений системы, состоящей из неравенств x<=y2 и у<х+3. Примером точки, координаты которой удовлетворяют условиям обеих неравенств, является (1;3). Отмечается, что, так как данная пара значений является решением обоих неравенств, то она является одним из множества решений. А все множество решений будет охватывать пересечение множеств, которые являются решениями каждого из неравенств. Данный вывод выделен в рамку для запоминания и указания на его важность. Далее указывается, что множество решений на координатной плоскости представляет собой множество точек, которые являются общими для множеств, представляющих решения каждого из неравенств.

Урок «Системы неравенств с двумя переменными»

Понимание сделанных выводов о решении системы неравенств закрепляется рассмотрением примеров. Первым рассматривается решение системы неравенств х22<=9 и x+y>=2. Очевидно, что решения первого неравенства на координатной плоскости включают окружность х22=9 и область внутри нее. Эта область на рисунке заполняется горизонтальной штриховкой. Множество решений неравенства x+y>=2 включает прямую x+y=2 и полуплоскость, расположенную выше. Данная область также обозначается на плоскости штрихами другого направления. Теперь можно определить пересечение двух множеств решений на рисунке. Оно заключено в сегменте круга х22<=9, который покрыт штриховкой полуплоскости x+y>=2.

Далее разбирается решение системы линейных неравенств y>=x-3 и y>=-2x+4. На рисунке рядом с условием задания строится координатная плоскость. На ней строится прямая, соответствующая решениям уравнения y=x-3. Областью решения неравенства y>=x-3 будет область, расположенная над данной прямой. Она заштриховывается. Множество решений второго неравенства располагается над прямой y=-2x+4. Данная прямая также строится на той же координатной плоскости и область решений штрихуется. Пересечением двух множеств является угол, построенный двумя прямыми, вместе с его внутренней областью. Область решений системы неравенств заполнена двойной штриховкой.

Урок «Системы неравенств с двумя переменными»

При рассмотрении третьего примера описан случай, когда графиками уравнений, соответствующих неравенствам системы, являются параллельные прямые. Решить необходимо систему неравенств y<=3x+1 и y>=3x-2. На координатной плоскости строится прямая, соответствующая уравнению y=3x+1. Область значений, соответствующих решениям неравенства y<=3x+1, лежит ниже данной прямой. Множество решений второго неравенства лежит выше прямой y=3x-2. При построении отмечается, что данные прямые параллельны. Область, являющаяся пересечением двух множеств решений, представляет собой полосу между данными прямыми.

Урок «Системы неравенств с двумя переменными»

Видеоурок «Системы неравенств с двумя переменными» может применяться в качестве наглядного пособия на уроке в школе или заменить объяснение учителя при самостоятельном изучении материала. Подробное понятное объяснение решения систем неравенств на координатной плоскости может помочь подать материал при дистанционном обучении.

Автор
Дата добавления 29.08.2014
Раздел Алгебра
Подраздел Видеоурок
Просмотров11509
Номер материала 666
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.