Уроки математики / Видеоурок / Урок "Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень"

Урок "Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень"

Краткое описание документа:

Видеоурок «Умножение и деление алгебраических дробей. Возведение алгебраической дроби  в степень» - вспомогательное средство для ведения урока математики по данной теме. С помощью видеоурока учителю легче сформировать у учеников умение выполнять умножение и деление алгебраических дробей. Наглядное пособие содержит подробное понятное описание примеров, в которых выполняются операции умножения и деления. Материал может быть продемонстрирован во время объяснения учителя или стать отдельной частью урока.

Урок "Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень"

Чтобы сформировать умение решать задания на умножение и деление алгебраических дробей, по ходу описания решения даются важные комментарии, моменты, требующие запоминания и глубокого понимания выделяются с помощью цвета, жирного шрифта, указателей. С помощью видеоурока учитель может повысить эффективность урока. Данное наглядное пособие поможет быстро и эффективно достичь учебных целей.

Урок "Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень"

Видеоурок начинается с представления темы. После этого указывается, что операции умножения и деления с алгебраическими дробями производятся аналогично операциям с обыкновенными дробями. На экране демонстрируются правила умножения, деления и возведения в степень дробей. С помощью буквенных параметров демонстрируется умножение дробей. Отмечается, что при умножении дробей числители, а также знаменатели перемножаются. Так получается результирующая дробь a/b·c/d=ac/bd. Демонстрируется деление дробей на примере выражения a/b:c/d. Указывается, что для выполнения операции деления необходимо в числитель записать произведение числителя делимого и знаменателя делителя. Знаменателем частного становится произведение знаменателя делимого и числителя делителя. Таким образом, операция деления превращается в операцию умножения дроби делимого и дроби, обратной делителю. Возведение в степень дроби приравнивается дроби, в которой числитель и знаменатель возводятся в назначенную степень.

Далее рассматривается решение примеров. В примере 1 необходимо выполнить действия (5х-5у)/(х-у)·(х22)/10х. Чтобы решить данный пример, числитель второй дроби, входящей в произведение, раскладывается на множители. Используя формулы сокращенного умножения, делается преобразование х22=(х+у)(х-у). Затем числители дробей и знаменатели перемножаются. После проведения операций видно, что в числителе и знаменателе есть множители, которые можно сократить, используя основное свойство дроби. В результате преобразований получается дробь (х+у)2/2х. Здесь же рассматривается выполнение действий 7а3b5/(3a-3b)·(6b2-12ab+6a2)/49a4b5. Все числители и знаменатели рассматриваются на предмет возможности разложения на множители, выделения общих множителей. Затем перемножаются числители и знаменатели. После умножения производятся сокращения. Результатом преобразования становится дробь 2(a-b)/7а.

Урок "Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень"

Рассматривается пример, в котором необходимо выполнить действия (х3-1)/8у:(х2+х+1)/16у2. Чтобы решить выражение, предлагается преобразовать числитель первой дроби, используя формулу сокращенного умножения х3-1=(х-1)(х2+х+1). Согласно правилу деления дробей, первая дробь умножается на дробь, обратную второй. После перемножения числителей и знаменателей получается дробь, которая содержит в числителе и знаменателе одинаковые множители. Они сокращаются. В результате получается дробь (х-1)2у. Здесь же описывается решение примера (a4-b4)/(ab+2b-3a-6):(b-a)(a+2). Аналогично предыдущему примеру, для преобразования числителя применяется формула сокращенного умножения. Также преобразуется знаменатель дроби. Затем первая дробь перемножается с дробью, обратной второй дроби. После умножения выполняются преобразования, сокращения числителя и знаменателя на общие множители. В результате получается дробь –(a+b)(a2+b2)/(b-3). Обращается внимание учеников, как меняются знаки числителя и знаменателя при умножении.

В третьем примере необходимо выполнить действия с дробями ((х+2)/(3х2-6х))3:((х2+4х+4)/(х2-4х+4))2. В решении данного примера применяется правило возведения дроби в степень. И первая, и вторая дробь возведены в степень. Они преобразуются возведением в степень числители и знаменателя дроби. Кроме того, для преобразования знаменателей дробей применяется формула сокращенного умножения, выделение общего множителя. Чтобы поделить первую дробь на вторую, необходимо умножить первую дробь на обратную дробь ко второй. В числителе и знаменателе образуются выражения, которые можно сократить. После преобразования получается дробь (х-2)/27х3(х+2).

Урок "Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень"

Видеоурок «Умножение и деление алгебраических дробей. Возведение алгебраической дроби  в степень» применяется для повышения эффективности традиционного урока математики. Материал может быть полезен учителю, осуществляющему обучение дистанционно. Детальное понятное описание решения примеров поможет ученикам, самостоятельно осваивающим предмет или требующим дополнительных занятий. 

Автор
Дата добавления 29.07.2014
Раздел Алгебра
Подраздел Видеоурок
Просмотров7763
Номер материала 529
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.